Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 959
BMC bioinformatics, 2024-02, Vol.25 (1), p.79-79, Article 79
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Fusing graph transformer with multi-aggregate GCN for enhanced drug-disease associations prediction
Ist Teil von
  • BMC bioinformatics, 2024-02, Vol.25 (1), p.79-79, Article 79
Ort / Verlag
England: BioMed Central Ltd
Erscheinungsjahr
2024
Quelle
MEDLINE
Beschreibungen/Notizen
  • Identification of potential drug-disease associations is important for both the discovery of new indications for drugs and for the reduction of unknown adverse drug reactions. Exploring the potential links between drugs and diseases is crucial for advancing biomedical research and improving healthcare. While advanced computational techniques play a vital role in revealing the connections between drugs and diseases, current research still faces challenges in the process of mining potential relationships between drugs and diseases using heterogeneous network data. In this study, we propose a learning framework for fusing Graph Transformer Networks and multi-aggregate graph convolutional network to learn efficient heterogenous information graph representations for drug-disease association prediction, termed WMAGT. This method extensively harnesses the capabilities of a robust graph transformer, effectively modeling the local and global interactions of nodes by integrating a graph convolutional network and a graph transformer with self-attention mechanisms in its encoder. We first integrate drug-drug, drug-disease, and disease-disease networks to construct heterogeneous information graph. Multi-aggregate graph convolutional network and graph transformer are then used in conjunction with neural collaborative filtering module to integrate information from different domains into highly effective feature representation. Rigorous cross-validation, ablation studies examined the robustness and effectiveness of the proposed method. Experimental results demonstrate that WMAGT outperforms other state-of-the-art methods in accurate drug-disease association prediction, which is beneficial for drug repositioning and drug safety research.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX