Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 15

Details

Autor(en) / Beteiligte
Titel
Mixed‐Dimensional Formamidinium Bismuth Iodides Featuring In‐Situ Formed Type‐I Band Structure for Convolution Neural Networks
Ist Teil von
  • Advanced science, 2022-05, Vol.9 (14), p.e2200168-n/a
Ort / Verlag
Germany: John Wiley & Sons, Inc
Erscheinungsjahr
2022
Link zum Volltext
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • For valence change memory (VCM)‐type synapses, a large number of vacancies help to achieve very linearly changed dynamic range, and also, the low activation energy of vacancies enables low‐voltage operation. However, a large number of vacancies increases the current of artificial synapses by acting like dopants, which aggravates low‐energy operation and device scalability. Here, mixed‐dimensional formamidinium bismuth iodides featuring in‐situ formed type‐I band structure are reported for the VCM‐type synapse. As compared to the pure 2D and 0D phases, the mixed phase increases defect density, which induces a better dynamic range and higher linearity. In addition, the mixed phase decreases conductivity for non‐paths despite a large number of defects providing lots of conducting paths. Thus, the mixed phase‐based memristor devices exhibit excellent potentiation/depression characteristics with asymmetricity of 3.15, 500 conductance states, a dynamic range of 15, pico ampere‐scale current level, and energy consumption per spike of 61.08 aJ. A convolutional neural network (CNN) simulation with the Canadian Institute for Advanced Research‐10 (CIFAR‐10) dataset is also performed, confirming a maximum recognition rate of approximately 87%. This study is expected to lay the groundwork for future research on organic bismuth halide‐based memristor synapses usable for a neuromorphic computing system. Mixed‐dimensional formamidinium bismuth iodides exhibit highly linear potentiation/depression characteristics with energy consumption as low as 61.08 aJ for the convolutional neural network (CNN) due to a large number of defects and in‐situ formed type I band alignment.
Sprache
Englisch
Identifikatoren
ISSN: 2198-3844
eISSN: 2198-3844
DOI: 10.1002/advs.202200168
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_7a1a8cb85b5b44888ed40c3a9fa88de0

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX