Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 1257

Details

Autor(en) / Beteiligte
Titel
Impaired Functional Homotopy and Topological Properties Within the Default Mode Network of Children With Generalized Tonic-Clonic Seizures: A Resting-State fMRI Study
Ist Teil von
  • Frontiers in neuroscience, 2022-06, Vol.16, p.833837-833837
Ort / Verlag
Frontiers Media S.A
Erscheinungsjahr
2022
Link zum Volltext
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Introduction The aim of the present study was to examine interhemispheric functional connectivity (FC) and topological organization within the default-mode network (DMN) in children with generalized tonic-clonic seizures (GTCS). Methods Resting-state functional MRI was collected in 24 children with GTCS and 34 age-matched typically developing children (TDC). Between-group differences in interhemispheric FC were examined by an automated voxel-mirrored homotopic connectivity (VMHC) method. The topological properties within the DMN were also analyzed using graph theoretical approaches. Consistent results were detected and the VMHC values were extracted as features in machine learning for subject classification. Results Children with GTCS showed a significant decrease in VMHC in the DMN, including the hippocampal formation (HF), lateral temporal cortex (LTC), and angular and middle frontal gyrus. Although the patients exhibited efficient small-world properties of the DMN similar to the TDC, significant changes in regional topological organization were found in the patients, involving the areas of the bilateral temporal parietal junction, bilateral LTC, left temporal pole, and HF. Within the DMN, disrupted interhemispheric FC was found between the bilateral HF and LTC, which was consistent with the VMHC results. The VMHC values in bilateral HF and LTC were significantly correlated with clinical information in patients. Support vector machine analysis using average VMHC information in the bilateral HF and LTC as features achieved a correct classification rate of 89.34% for the classification. Conclusion These results indicate that decreased homotopic coordination in the DMN can be used as an effective biomarker to reflect seizure effects and to distinguish children with GTCSs from TDC.
Sprache
Englisch
Identifikatoren
ISSN: 1662-453X, 1662-4548
eISSN: 1662-453X
DOI: 10.3389/fnins.2022.833837
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_756437ad15bc4c938ab124fc19c7756a

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX