Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Review of Causal Discovery Methods Based on Graphical Models
Ist Teil von
Frontiers in genetics, 2019-06, Vol.10, p.524-524
Ort / Verlag
Switzerland: Frontiers Media S.A
Erscheinungsjahr
2019
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
A fundamental task in various disciplines of science, including biology, is to find underlying causal relations and make use of them. Causal relations can be seen if interventions are properly applied; however, in many cases they are difficult or even impossible to conduct. It is then necessary to discover causal relations by analyzing statistical properties of purely observational data, which is known as causal discovery or causal structure search. This paper aims to give a introduction to and a brief review of the computational methods for causal discovery that were developed in the past three decades, including constraint-based and score-based methods and those based on functional causal models, supplemented by some illustrations and applications.