Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 131
Molecular brain, 2022-07, Vol.15 (1), p.1-14, Article 64
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Function of KCNQ2 channels at nodes of Ranvier of lumbar spinal ventral nerves of rats
Ist Teil von
  • Molecular brain, 2022-07, Vol.15 (1), p.1-14, Article 64
Ort / Verlag
London: BioMed Central Ltd
Erscheinungsjahr
2022
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Previous immunohistochemical studies have shown the expression of KCNQ2 channels at nodes of Ranvier (NRs) of myelinated nerves. However, functions of these channels at NRs remain elusive. In the present study, we addressed this issue by directly applying whole-cell patch-clamp recordings at NRs of rat lumbar spinal ventral nerves in ex vivo preparations. We show that depolarizing voltages evoke large non-inactivating outward currents at NRs, which are partially inhibited by KCNQ channel blocker linopirdine and potentiated by KCNQ channel activator retigabine. Furthermore, linopirdine significantly alters intrinsic electrophysiological properties of NRs to depolarize resting membrane potential, increase input resistance, prolong AP width, reduce AP threshold, and decrease AP amplitude. On the other hand, retigabine significantly decreases input resistance and increases AP rheobase at NRs. Moreover, linopirdine increases excitability at NRs by converting single AP firing into multiple AP firing at many NRs. Saltatory conduction velocity is significantly reduced by retigabine, and AP success rate at high stimulation frequency is significantly increased by linopirdine. Collectively, KCNQ2 channels play a significant role in regulating intrinsic electrophysiological properties and saltatory conduction at NRs of motor nerve fibers of rats. These findings may provide insights into how the loss-of-function mutation in KCNQ2 channels can lead to neuromuscular disorders in human patients.
Sprache
Englisch
Identifikatoren
ISSN: 1756-6606
eISSN: 1756-6606
DOI: 10.1186/s13041-022-00949-0
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_6dd6783936a341dca824476028716265

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX