Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 3778

Details

Autor(en) / Beteiligte
Titel
Compact Combustion Mechanisms of Typical n -Alkanes Developed by the Minimized Reaction Network Method
Ist Teil von
  • Molecules (Basel, Switzerland), 2023-11, Vol.28 (23), p.7695
Ort / Verlag
Switzerland: MDPI AG
Erscheinungsjahr
2023
Link zum Volltext
Quelle
EZB-FREE-00999 freely available EZB journals
Beschreibungen/Notizen
  • The existing combustion kinetic modeling method which aims at developing phenomenological combustion mechanisms characterized by multiple reactions confronts several challenges, including the conflicts between computing resources and mechanism scales during numerical simulation, etc. In order to address these issues, the minimized reaction network method for complex combustion system modeling based on the principle of simultaneous chemical equilibrium is proposed, which is aimed to develop combustion mechanisms with minimal reaction steps under a limited number of species. The concept of mechanism resolution is proposed in this method, and the reaction network with minimal reaction steps under a given mechanism resolution is constructed so that the scale of mechanisms is compressed greatly. Meanwhile, distinguishing from other mechanisms, the reversible form of elementary reactions is adopted and the classical two-parameter ( , ) Arrhenius equation fits the rate constants. Typical -alkanes including -butane, -heptane, -octane, -decane, -dodecane and -hexadecane were taken as examples to indicate the development process of mechanisms and systematic kinetic validations were carried out. Results show that this method leads to very compact mechanisms with satisfactory accuracy, and it eliminates the process of mechanism reduction and is beneficial for mechanism optimization. This method and the derived kinetic mechanisms are hoped to contribute to combustion engineering applications.
Sprache
Englisch
Identifikatoren
ISSN: 1420-3049
eISSN: 1420-3049
DOI: 10.3390/molecules28237695
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_6dd18055a57845eea1160b066c643b35

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX