Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 2718743
Sensors (Basel, Switzerland), 2024-05, Vol.24 (10), p.3066
2024

Details

Autor(en) / Beteiligte
Titel
Automatic Localization of Soybean Seedlings Based on Crop Signaling and Multi-View Imaging
Ist Teil von
  • Sensors (Basel, Switzerland), 2024-05, Vol.24 (10), p.3066
Ort / Verlag
Switzerland: MDPI AG
Erscheinungsjahr
2024
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Soybean is grown worldwide for its high protein and oil content. Weeds compete fiercely for resources, which affects soybean yields. Because of the progressive enhancement of weed resistance to herbicides and the quickly increasing cost of manual weeding, mechanical weed control is becoming the preferred method of weed control. Mechanical weed control finds it difficult to remove intra-row weeds due to the lack of rapid and precise weed/soybean detection and location technology. Rhodamine B (Rh-B) is a systemic crop compound that can be absorbed by soybeans which fluoresces under a specific excitation light. The purpose of this study is to combine systemic crop compounds and computer vision technology for the identification and localization of soybeans in the field. The fluorescence distribution properties of systemic crop compounds in soybeans and their effects on plant growth were explored. The fluorescence was mainly concentrated in soybean cotyledons treated with Rh-B. After a comparison of soybean seedlings treated with nine groups of rhodamine B solutions at different concentrations ranging from 0 to 1440 ppm, the soybeans treated with 180 ppm Rh-B for 24 h received the recommended dosage, resulting in significant fluorescence that did not affect crop growth. Increasing the Rh-B solutions reduced crop biomass, while prolonged treatment times reduced seed germination. The fluorescence produced lasted for 20 days, ensuring a stable signal in the early stages of growth. Additionally, a precise inter-row soybean plant location system based on a fluorescence imaging system with a 96.7% identification accuracy, determined on 300 datasets, was proposed. This article further confirms the potential of crop signaling technology to assist machines in achieving crop identification and localization in the field.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX