Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 1119

Details

Autor(en) / Beteiligte
Titel
Imitation Learning with Deep Attentive Tabular Neural Networks for Environmental Prediction and Control in Smart Home
Ist Teil von
  • Energies (Basel), 2023-07, Vol.16 (13), p.5091
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2023
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • Automated indoor environmental control is a research topic that is beginning to receive much attention in smart home automation. All machine learning models proposed to date for this purpose have relied on reinforcement learning using simple metrics of comfort as reward signals. Unfortunately, such indicators do not take into account individual preferences and other elements of human perception. This research explores an alternative (albeit closely related) paradigm called imitation learning. In the proposed architecture, machine learning models are trained with tabular data pertaining to environmental control activities of the real occupants of a residential unit. This eliminates the need for metrics that explicitly quantify human perception of comfort. Moreover, this article introduces the recently proposed deep attentive tabular neural network (TabNet) into smart home research by incorporating TabNet-based components within its overall framework. TabNet has consistently outperformed all other popular machine learning models in a variety of other application domains, including gradient boosting, which was previously considered ideal for learning from tabular data. The results obtained herein strongly suggest that TabNet is the best choice for smart home applications. Simulations conducted using the proposed architecture demonstrate its effectiveness in reproducing the activity patterns of the home unit’s actual occupants.
Sprache
Englisch
Identifikatoren
ISSN: 1996-1073
eISSN: 1996-1073
DOI: 10.3390/en16135091
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_6c6b7f69ed46479184bde6ed62d5f57e

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX