Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 127
Open Access
Type‐III Superconductivity
Advanced science, 2023-05, Vol.10 (14), p.e2206523-n/a
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Type‐III Superconductivity
Ist Teil von
  • Advanced science, 2023-05, Vol.10 (14), p.e2206523-n/a
Ort / Verlag
Germany: John Wiley & Sons, Inc
Erscheinungsjahr
2023
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Superconductivity remains one of most fascinating quantum phenomena existing on a macroscopic scale. Its rich phenomenology is usually described by the Ginzburg–Landau (GL) theory in terms of the order parameter, representing the macroscopic wave function of the superconducting condensate. The GL theory addresses one of the prime superconducting properties, screening of the electromagnetic field because it becomes massive within a superconductor, the famous Anderson–Higgs mechanism. Here the authors describe another widely‐spread type of superconductivity where the Anderson–Higgs mechanism does not work and must be replaced by the Deser–Jackiw–Templeton topological mass generation and, correspondingly, the GL effective field theory must be replaced by an effective topological gauge theory. These superconductors are inherently inhomogeneous granular superconductors, where electronic granularity is either fundamental or emerging. It is shown that the corresponding superconducting transition is a 3D generalization of the 2D Berezinskii–Kosterlitz–Thouless vortex binding–unbinding transition. The binding–unbinding of the line‐like vortices in 3D results in the Vogel‐Fulcher‐Tamman scaling of the resistance near the superconducting transition. The authors report experimental data fully confirming the VFT behavior of the resistance. The effective field theory of inhomogeneous superconductors is not the Ginzburg–Landau theory but a topological gauge theory. Vortices with no dissipative core can proliferate also with no magnetic field. When the temperature is high enough, vortex deconfinement destroys superconductivity, generalizing the Berezinskii–Kosterlitz–Thouless transition mechanism to any dimension.
Sprache
Englisch
Identifikatoren
ISSN: 2198-3844
eISSN: 2198-3844
DOI: 10.1002/advs.202206523
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_65df7971737f4470b5a6de3cb36f45b4

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX