Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 42

Details

Autor(en) / Beteiligte
Titel
Managing Multi-center Flow Cytometry Data for Immune Monitoring
Ist Teil von
  • Cancer informatics, 2014-01, Vol.2014 (Suppl. 7), p.111-122
Ort / Verlag
London, England: SAGE Publishing
Erscheinungsjahr
2014
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • With the recent results of promising cancer vaccines and immunotherapy1–5, immune monitoring has become increasingly relevant for measuring treatment-induced effects on T cells, and an essential tool for shedding light on the mechanisms responsible for a successful treatment. Flow cytometry is the canonical multi-parameter assay for the fine characterization of single cells in solution, and is ubiquitously used in pre-clinical tumor immunology and in cancer immunotherapy trials. Current state-of-the-art polychromatic flow cytometry involves multi-step, multi-reagent assays followed by sample acquisition on sophisticated instruments capable of capturing up to 20 parameters per cell at a rate of tens of thousands of cells per second. Given the complexity of flow cytometry assays, reproducibility is a major concern, especially for multi-center studies. A promising approach for improving reproducibility is the use of automated analysis borrowing from statistics, machine learning and information visualization21–23, as these methods directly address the subjectivity, operator-dependence, labor-intensive and low fidelity of manual analysis. However, it is quite time-consuming to investigate and test new automated analysis techniques on large data sets without some centralized information management system. For large-scale automated analysis to be practical, the presence of consistent and high-quality data linked to the raw FCS files is indispensable. In particular, the use of machine-readable standard vocabularies to characterize channel metadata is essential when constructing analytic pipelines to avoid errors in processing, analysis and interpretation of results. For automation, this high-quality metadata needs to be programmatically accessible, implying the need for a consistent Application Programming Interface (API). In this manuscript, we propose that upfront time spent normalizing flow cytometry data to conform to carefully designed data models enables automated analysis, potentially saving time in the long run. The ReFlow informatics framework was developed to address these data management challenges.
Sprache
Englisch
Identifikatoren
ISSN: 1176-9351
eISSN: 1176-9351
DOI: 10.4137/CIN.S16346
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_65de82ed7704497181292095a39fdc86

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX