Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 167

Details

Autor(en) / Beteiligte
Titel
Deep Learning-Based Segmentation and Quantification of Cucumber Powdery Mildew Using Convolutional Neural Network
Ist Teil von
  • Frontiers in plant science, 2019-02, Vol.10, p.155-155
Ort / Verlag
Switzerland: Frontiers Media S.A
Erscheinungsjahr
2019
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Powdery mildew is a common disease in plants, and it is also one of the main diseases in the middle and final stages of cucumber ( ). Powdery mildew on plant leaves affects the photosynthesis, which may reduce the plant yield. Therefore, it is of great significance to automatically identify powdery mildew. Currently, most image-based models commonly regard the powdery mildew identification problem as a dichotomy case, yielding a true or false classification assertion. However, quantitative assessment of disease resistance traits plays an important role in the screening of breeders for plant varieties. Therefore, there is an urgent need to exploit the extent to which leaves are infected which can be obtained by the area of diseases regions. In order to tackle these challenges, we propose a semantic segmentation model based on convolutional neural networks (CNN) to segment the powdery mildew on cucumber leaf images at pixel level, achieving an average pixel accuracy of 96.08%, intersection over union of 72.11% and Dice accuracy of 83.45% on twenty test samples. This outperforms the existing segmentation methods, K-means, Random forest, and GBDT methods. In conclusion, the proposed model is capable of segmenting the powdery mildew on cucumber leaves at pixel level, which makes a valuable tool for cucumber breeders to assess the severity of powdery mildew.
Sprache
Englisch
Identifikatoren
ISSN: 1664-462X
eISSN: 1664-462X
DOI: 10.3389/fpls.2019.00155
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_6558c3dba3d24eb0955312b4a64dc404

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX