Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 49

Details

Autor(en) / Beteiligte
Titel
A single neural network for cone-beam computed tomography-based radiotherapy of head-and-neck, lung and breast cancer
Ist Teil von
  • Physics and imaging in radiation oncology, 2020-04, Vol.14, p.24-31
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •A deep learning network facilitated dose calculation from CBCT.•A single network achieved CBCT-based dose calculation generating synthetic CT for head-and-neck, lung, and breast cancer patients with similar performance to a network specifically trained for each anatomical site.•Generation of synthetic-CT can be achieved within 10 s, facilitating online adaptive radiotherapy scenarios. Background and purpose Adaptive radiotherapy based on cone-beam computed tomography (CBCT) requires high CT number accuracy to ensure accurate dose calculations. Recently, deep learning has been proposed for fast CBCT artefact corrections on single anatomical sites. This study investigated the feasibility of applying a single convolutional network to facilitate dose calculation based on CBCT for head-and-neck, lung and breast cancer patients. Materials and Methods Ninety-nine patients diagnosed with head-and-neck, lung or breast cancer undergoing radiotherapy with CBCT-based position verification were included in this study. The CBCTs were registered to planning CT according to clinical procedures. Three cycle-consistent generative adversarial networks (cycle-GANs) were trained in an unpaired manner on 15 patients per anatomical site generating synthetic-CTs (sCTs). Another network was trained with all the anatomical sites together. Performances of all four networks were compared and evaluated for image similarity against rescan CT (rCT). Clinical plans were recalculated on rCT and sCT and analysed through voxel-based dose differences and γ-analysis. Results A sCT was generated in 10 s. Image similarity was comparable between models trained on different anatomical sites and a single model for all sites. Mean dose differences <0.5% were obtained in high-dose regions. Mean gamma (3%, 3 mm) pass-rates >95% were achieved for all sites. Conclusion Cycle-GAN reduced CBCT artefacts and increased similarity to CT, enabling sCT-based dose calculations. A single network achieved CBCT-based dose calculation generating synthetic CT for head-and-neck, lung, and breast cancer patients with similar performance to a network specifically trained for each anatomical site.
Sprache
Englisch
Identifikatoren
ISSN: 2405-6316
eISSN: 2405-6316
DOI: 10.1016/j.phro.2020.04.002
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_651e18e992db4d408141df8dfb5be162

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX