Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 87

Details

Autor(en) / Beteiligte
Titel
Machine learning-powered compact modeling of stochastic electronic devices using mixture density networks
Ist Teil von
  • Scientific reports, 2024-03, Vol.14 (1), p.6383-6383, Article 6383
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2024
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • The relentless pursuit of miniaturization and performance enhancement in electronic devices has led to a fundamental challenge in the field of circuit design and simulation-how to accurately account for the inherent stochastic nature of certain devices. While conventional deterministic models have served as indispensable tools for circuit designers, they fall short when it comes to capturing the subtle yet critical variability exhibited by many electronic components. In this paper, we present an innovative approach that transcends the limitations of traditional modeling techniques by harnessing the power of machine learning, specifically Mixture Density Networks (MDNs), to faithfully represent and simulate the stochastic behavior of electronic devices. We demonstrate our approach to model heater cryotrons, where the model is able to capture the stochastic switching dynamics observed in the experiment. Our model shows 0.82% mean absolute error for switching probability. This paper marks a significant step forward in the quest for accurate and versatile compact models, poised to drive innovation in the realm of electronic circuits.
Sprache
Englisch
Identifikatoren
ISSN: 2045-2322
eISSN: 2045-2322
DOI: 10.1038/s41598-024-56779-8
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_633041add4dc409fa1532145bbae389a

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX