Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 13

Details

Autor(en) / Beteiligte
Titel
DNA methylation profiles reveal sex-specific associations between gestational exposure to ambient air pollution and placenta cell-type composition in the PRISM cohort study
Ist Teil von
  • Clinical epigenetics, 2023-12, Vol.15 (1), p.188-188, Article 188
Ort / Verlag
Germany: BioMed Central Ltd
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • Gestational exposure to ambient air pollution has been associated with adverse health outcomes for mothers and newborns. The placenta is a central regulator of the in utero environment that orchestrates development and postnatal life via fetal programming. Ambient air pollution contaminants can reach the placenta and have been shown to alter bulk placental tissue DNA methylation patterns. Yet the effect of air pollution on placental cell-type composition has not been examined. We aimed to investigate whether the exposure to ambient air pollution during gestation is associated with placental cell types inferred from DNA methylation profiles. We leveraged data from 226 mother-infant pairs in the Programming of Intergenerational Stress Mechanisms (PRISM) longitudinal cohort in the Northeastern US. Daily concentrations of fine particulate matter (PM ) at 1 km spatial resolution were estimated from a spatiotemporal model developed with satellite data and linked to womens' addresses during pregnancy and infants' date of birth. The proportions of six cell types [syncytiotrophoblasts, trophoblasts, stromal, endothelial, Hofbauer and nucleated red blood cells (nRBCs)] were derived from placental tissue 450K DNA methylation array. We applied compositional regression to examine overall changes in placenta cell-type composition related to PM average by pregnancy trimester. We also investigated the association between PM and individual cell types using beta regression. All analyses were performed in the overall sample and stratified by infant sex adjusted for covariates. In male infants, first trimester (T1) PM was associated with changes in placental cell composition (p = 0.03), driven by a decrease [per one PM interquartile range (IQR)] of 0.037 in the syncytiotrophoblasts proportion (95% confidence interval (CI) [- 0.066, - 0.012]), accompanied by an increase in trophoblasts of 0.033 (95% CI: [0.009, 0.064]). In females, second and third trimester PM were associated with overall changes in placental cell-type composition (T2: p = 0.040; T3: p = 0.049), with a decrease in the nRBC proportion. Individual cell-type analysis with beta regression showed similar results with an additional association found for third trimester PM and stromal cells in females (decrease of 0.054, p = 0.024). Gestational exposure to air pollution was associated with placenta cell composition. Further research is needed to corroborate these findings and evaluate their role in PM -related impact in the placenta and consequent fetal programming.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX