Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 872

Details

Autor(en) / Beteiligte
Titel
Crop water stress maps for an entire growing season from visible and thermal UAV imagery
Ist Teil von
  • Biogeosciences, 2016-12, Vol.13 (24), p.6545-6563
Ort / Verlag
Katlenburg-Lindau: Copernicus GmbH
Erscheinungsjahr
2016
Link zum Volltext
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • This study investigates whether a water deficit index (WDI) based on imagery from unmanned aerial vehicles (UAVs) can provide accurate crop water stress maps at different growth stages of barley and in differing weather situations. Data from both the early and late growing season are included to investigate whether the WDI has the unique potential to be applicable both when the land surface is partly composed of bare soil and when crops on the land surface are senescing. The WDI differs from the more commonly applied crop water stress index (CWSI) in that it uses both a spectral vegetation index (VI), to determine the degree of surface greenness, and the composite land surface temperature (LST) (not solely canopy temperature).Lightweight thermal and RGB (red–green–blue) cameras were mounted on a UAV on three occasions during the growing season 2014, and provided composite LST and color images, respectively. From the LST, maps of surface-air temperature differences were computed. From the color images, the normalized green–red difference index (NGRDI), constituting the indicator of surface greenness, was computed. Advantages of the WDI as an irrigation map, as compared with simpler maps of the surface-air temperature difference, are discussed, and the suitability of the NGRDI is assessed. Final WDI maps had a spatial resolution of 0.25 m.It was found that the UAV-based WDI is in agreement with measured stress values from an eddy covariance system. Further, the WDI is especially valuable in the late growing season because at this stage the remote sensing data represent crop water availability to a greater extent than they do in the early growing season, and because the WDI accounts for areas of ripe crops that no longer have the same need for irrigation. WDI maps can potentially serve as water stress maps, showing the farmer where irrigation is needed to ensure healthy growing plants, during entire growing season.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX