Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 361

Details

Autor(en) / Beteiligte
Titel
EGFR Assessment in Lung Cancer CT Images: Analysis of Local and Holistic Regions of Interest Using Deep Unsupervised Transfer Learning
Ist Teil von
  • IEEE access, 2021, Vol.9, p.58667-58676
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2021
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • Statistics have demonstrated that one of the main factors responsible for the high mortality rate related to lung cancer is the late diagnosis. Precision medicine practices have shown advances in the individualized treatment according to the genetic profile of each patient, providing better control on cancer response. Medical imaging offers valuable information with an extensive perspective of the cancer, opening opportunities to explore the imaging manifestations associated with the tumor genotype in a non-invasive way. This work aims to study the relevance of physiological features captured from Computed Tomography images, using three different 2D regions of interest to assess the Epidermal growth factor receptor ( EGFR ) mutation status: nodule, lung containing the main nodule, and both lungs. A Convolutional Autoencoder was developed for the reconstruction of the input image. Thereafter, the encoder block was used as a feature extractor, stacking a classifier on top to assess the EGFR mutation status. Results showed that extending the analysis beyond the local nodule allowed the capture of more relevant information, suggesting the presence of useful biomarkers using the lung with nodule region of interest, which allowed to obtain the best prediction ability. This comparative study represents an innovative approach for gene mutations status assessment, contributing to the discussion on the extent of pathological phenomena associated with cancer development, and its contribution to more accurate Artificial Intelligence-based solutions, and constituting, to the best of our knowledge, the first deep learning approach that explores a comprehensive analysis for the EGFR mutation status classification.
Sprache
Englisch
Identifikatoren
ISSN: 2169-3536
eISSN: 2169-3536
DOI: 10.1109/ACCESS.2021.3070701
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_5946796c25cd413990e51ab732e3d45d

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX