Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 92

Details

Autor(en) / Beteiligte
Titel
Reuse of Data Center Waste Heat in Nearby Neighborhoods: A Neural Networks-Based Prediction Model
Ist Teil von
  • Energies (Basel), 2019-03, Vol.12 (5), p.814
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2019
Quelle
EZB-FREE-00999 freely available EZB journals
Beschreibungen/Notizen
  • This paper addresses the problem of data centers’ cost efficiency considering the potential of reusing the generated heat in district heating networks. We started by analyzing the requirements and heat reuse potential of a high performance computing data center and then we had defined a heat reuse model which simulates the thermodynamic processes from the server room. This allows estimating by means of Computational Fluid Dynamics simulations the temperature of the hot air recovered by the heat pumps from the server room allowing them to operate more efficiently. To address the time and space complexity at run-time we have defined a Multi-Layer Perceptron neural network infrastructure to predict the hot air temperature distribution in the server room from the training data generated by means of simulations. For testing purposes, we have modeled a virtual server room having a volume of 48 m3 and two typical 42U racks. The results show that using our model the heat distribution in the server room can be predicted with an error less than 1 °C allowing data centers to accurately estimate in advance the amount of waste heat to be reused and the efficiency of heat pump operation.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX