Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 30

Details

Autor(en) / Beteiligte
Titel
Convolutional Neural Network Defect Detection Algorithm for Wire Bonding X-ray Images
Ist Teil von
  • Micromachines (Basel), 2023-09, Vol.14 (9), p.1737
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2023
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • To address the challenges of complex backgrounds, small defect sizes, and diverse defect types in defect detection of wire bonding X-ray images, this paper proposes a convolutional-neural-network-based defect detection method called YOLO-CSS. This method designs a novel feature extraction network that effectively captures semantic features from different gradient information. It utilizes a self-adaptive weighted multi-scale feature fusion module called SMA which adaptively weights the contribution of detection results based on different scales of feature maps. Simultaneously, skip connections are employed at the bottleneck of the network to ensure the integrity of feature information. Experimental results demonstrate that on the wire bonding X-ray defect image dataset, the proposed algorithm achieves mAP 0.5 and mAP 0.5–0.95 values of 97.3% and 72.1%, respectively, surpassing the YOLO series algorithms. It also exhibits certain advantages in terms of model size and detection speed, effectively balancing detection accuracy and speed.
Sprache
Englisch
Identifikatoren
ISSN: 2072-666X
eISSN: 2072-666X
DOI: 10.3390/mi14091737
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_58bafb49575d412282ee04307955f4e5

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX