Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Surfactants are one of the major pollutants in laundry powder, which have an impact on the environment and human health. Carbon quantum dots (CQDs) are spherical zero-dimensional fluorescent nanoparticles with great potential for fluorescent probing, electrochemical biosensing and ion sensing. Herein, a bottom-up approach was developed for the synthesis of CQDs from biomass to detect laundry detergent and laundry powder. Waste chicken bones were used as carbon precursors after being dried, crushed and reacted with pure water at 180 °C for 4 h to generate CQDs, which exhibited a monodisperse quasi-spherical structure with an average particle size of 3.2 ± 0.2 nm. Functional groups, including -OH, C=O, C=C and C-O, were identified on the surface of the prepared CQDs. The optimal fluorescence excitation wavelength of the yellow-brown CQDs was 380 nm, with a corresponding emission peak at 465 nm. CQDs did not significantly increase cell death in multiple cell lines at concentrations of 200 µg·mL−1. Fluorescence enhancement of CQDs was observed after addition of sodium dodecyl benzene sulphonate, a major anionic surfactant in laundry powder. A linear relationship between fluorescence enhancement CQDs and the concentration of laundry powder was established. Thus, a hydrothermal method was developed to generate CQDs from waste biomass that may be used as a fluorescent probe to detect laundry powder.