Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 189
Entropy (Basel, Switzerland), 2020-02, Vol.22 (2), p.246
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Theory of Quantum Path Entanglement and Interference with Multiplane Diffraction of Classical Light Sources
Ist Teil von
  • Entropy (Basel, Switzerland), 2020-02, Vol.22 (2), p.246
Ort / Verlag
MDPI
Erscheinungsjahr
2020
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Quantum history states were recently formulated by extending the consistent histories approach of Griffiths to the entangled superposition of evolution paths and were then experimented with Greenberger–Horne–Zeilinger states. Tensor product structure of history-dependent correlations was also recently exploited as a quantum computing resource in simple linear optical setups performing multiplane diffraction (MPD) of fermionic and bosonic particles with remarkable promises. This significantly motivates the definition of quantum histories of MPD as entanglement resources with the inherent capability of generating an exponentially increasing number of Feynman paths through diffraction planes in a scalable manner and experimental low complexity combining the utilization of coherent light sources and photon-counting detection. In this article, quantum temporal correlation and interference among MPD paths are denoted with quantum path entanglement (QPE) and interference (QPI), respectively, as novel quantum resources. Operator theory modeling of QPE and counterintuitive properties of QPI are presented by combining history-based formulations with Feynman’s path integral approach. Leggett–Garg inequality as temporal analog of Bell’s inequality is violated for MPD with all signaling constraints in the ambiguous form recently formulated by Emary. The proposed theory for MPD-based histories is highly promising for exploiting QPE and QPI as important resources for quantum computation and communications in future architectures.
Sprache
Englisch
Identifikatoren
ISSN: 1099-4300
eISSN: 1099-4300
DOI: 10.3390/e22020246
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_56673e98db6646409d5a4001e9e79d52

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX