Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 226

Details

Autor(en) / Beteiligte
Titel
Effect of 3D Representative Volume Element (RVE) Thickness on Stress and Strain Partitioning in Crystal Plasticity Simulations of Multi-Phase Materials
Ist Teil von
  • Crystals (Basel), 2020-10, Vol.10 (10), p.944
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2020
Quelle
EZB-FREE-00999 freely available EZB journals
Beschreibungen/Notizen
  • Crystal plasticity simulations help to understand the local deformation behavior of multi-phase materials based on the microstructural attributes. The results of such simulations are mainly dependent on the Representative Volume Element (RVE) size and composition. The effect of RVE thickness on the changing global and local stress and strain is analyzed in this work for a test case of dual-phase steels in order to identify the minimal RVE thickness for obtaining consistent results. 100×100×100 voxel representative volume elements are constructed by varying grain size and random orientation distribution in DREAM-3D. The constructed RVEs are sliced in depth up to 1, 5, 10, 15, 20, 25, 30, 40, and 50 layers to construct different geometries with increasing thickness. Crystal plasticity model parameters for ferrite and martensite are taken from already published data and assigned to respective phases. Although the global stress/strain behavior of different RVEs is similar (<5% divergence), the local stress/strain partitioning in RVEs with varying thickness and grain size shows a considerable variation when statistically compared. It is concluded that two-dimensional (2D) RVEs can be used for crystal plasticity simulations when global deformation behavior is of interest. Whereas, it is necessary to consider three-dimensional (3D) RVEs, which have a specific thickness and number of grains for determining stabilized and more accurate local deformation behavior. This estimation will help researchers in optimizing the computation time for accurate mesoscale simulations.
Sprache
Englisch
Identifikatoren
ISSN: 2073-4352
eISSN: 2073-4352
DOI: 10.3390/cryst10100944
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_4e0ecf8df23c48019b0aa3a8ca1a3317

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX