Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 288
Frontiers in microbiology, 2018-04, Vol.9, p.677-677
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
The Resistome of Low-Impacted Marine Environments Is Composed by Distant Metallo-β-Lactamases Homologs
Ist Teil von
  • Frontiers in microbiology, 2018-04, Vol.9, p.677-677
Ort / Verlag
Switzerland: Frontiers Media S.A
Erscheinungsjahr
2018
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • The worldwide dispersion and sudden emergence of new antibiotic resistance genes (ARGs) determined the need in uncovering which environment participate most as their source and reservoir. ARGs closely related to those currently found in human pathogens occur in the resistome of anthropogenic impacted environments. However, the role of pristine environment as the origin and source of ARGs remains underexplored and controversy, particularly, the marine environments represented by the oceans. Here, due to the ocean nature, we hypothesized that the resistome of this pristine/low-impacted marine environment is represented by distant ARG homologs. To test this hypothesis we performed an analysis on the Global Ocean Sampling (GOS) metagenomic project dataset focusing on the metallo-β-lactamases (MβLs) as the ARG model. MβLs have been a challenge to public health, since they hydrolyze the carbapenems, one of the last therapeutic choice in clinics. Using Hidden Markov Model (HMM) profiles, we were successful in identifying a high diversity of distant MβL homologs, related to the B1, B2, and B3 subclasses. The majority of them were distributed across the Atlantic, Indian, and Pacific Oceans being related to the chromosomally encoded MβL GOB present in genus. It was observed only a reduced number of metagenomic sequence homologs related to the acquired MβL enzymes (VIM, SPM-1, and AIM-1) that currently have impact in clinics. Therefore, low antibiotic impacted marine environment, as the ocean, are unlikely the source of ARGs that have been causing enormous threat to the public health.
Sprache
Englisch
Identifikatoren
ISSN: 1664-302X
eISSN: 1664-302X
DOI: 10.3389/fmicb.2018.00677
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_4bb4a55410b046f390f12fbdfb4e7ce6

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX