Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 280

Details

Autor(en) / Beteiligte
Titel
Artificial Neural Network-Derived Cerebral Metabolic Rate of Oxygen for Differentiating Glioblastoma and Brain Metastasis in MRI: A Feasibility Study
Ist Teil von
  • Applied sciences, 2021-11, Vol.11 (21), p.9928
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2021
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Glioblastoma may appear similar to cerebral metastasis on conventional MRI in some cases, but their therapies differ significantly. This prospective feasibility study was aimed at differentiating them by applying the quantitative susceptibility mapping and quantitative blood-oxygen-level-dependent (QSM + qBOLD) model to these entities for the first time. We prospectively included 15 untreated patients with glioblastoma (n = 7, median age: 68 years, range: 54–84 years) or brain metastasis (n = 8, median age 66 years, range: 50–78 years) who underwent preoperative MRI including multi-gradient echo and arterial spin labeling sequences. Oxygen extraction fraction (OEF), cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) were calculated in the contrast-enhancing tumor (CET) and peritumoral non-enhancing T2 hyperintense region (NET2), using an artificial neural network. We demonstrated that OEF in CET was significantly lower (p = 0.03) for glioblastomas than metastases, all features were significantly higher (p = 0.01) in CET than in NET2 for metastasis patients only, and the ratios of CET/NET2 for CBF (p = 0.04) and CMRO2 (p = 0.01) were significantly higher in metastasis patients than in glioblastoma patients. Discriminative power of a support-vector machine classifier was highest with a combination of two features, yielding an area under the receiver operating characteristic curve of 0.94 with 93% diagnostic accuracy. QSM + qBOLD allows for robust differentiation of glioblastoma and cerebral metastasis while yielding insights into tumor oxygenation.
Sprache
Englisch
Identifikatoren
ISSN: 2076-3417
eISSN: 2076-3417
DOI: 10.3390/app11219928
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_4b5856c301b04c5784719615773daec1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX