Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 249

Details

Autor(en) / Beteiligte
Titel
High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism
Ist Teil von
  • Physical review. X, 2018-05, Vol.8 (2), p.021046, Article 021046
Ort / Verlag
College Park: American Physical Society
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)–(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. It further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.
Sprache
Englisch
Identifikatoren
ISSN: 2160-3308
eISSN: 2160-3308
DOI: 10.1103/PhysRevX.8.021046
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_4989336bb3254d06a78bcdaf3678a672

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX