Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 340

Details

Autor(en) / Beteiligte
Titel
Toward Suicidal Ideation Detection with Lexical Network Features and Machine Learning
Ist Teil von
  • Northeast journal of complex systems, 2022-04, Vol.4 (1)
Ort / Verlag
Binghamton University Library
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • In this study, we introduce a new network feature for detecting suicidal ideation from clinical texts and conduct various additional experiments to enrich the state of knowledge. We evaluate statistical features with and without stopwords, use lexical networks for feature extraction and classification, and compare the results with standard machine learning methods using a logistic classifier, a neural network, and a deep learning method. We utilize three text collections. The first two contain transcriptions of interviews conducted by experts with suicidal (n=161 patients that experienced severe ideation) and control subjects (n=153). The third collection consists of interviews conducted by experts with epilepsy patients, with a few of them admitting to experiencing suicidal ideation in the past (32 suicidal and 77 control). The selected methods detect suicidal ideation with an average area under the curve (AUC) score of 95% on the merged collection with high suicidal ideation, and the trained models generalize over the third collection with an average AUC score of 69%. Results reveal that lexical networks are promising for classification and feature extraction as successful as the deep learning model. We also observe that a logistic classifier’s performance was comparable with the deep learning method while promising explainability.
Sprache
Englisch
Identifikatoren
ISSN: 2577-8439
eISSN: 2577-8439
DOI: 10.22191/nejcs/vol4/iss1/2
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_48cd77d8e9574a2e9870ef6fa50f457a

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX