Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Fe(III) Ions-Assisted Aniline Polymerization Strategy to Nitrogen-Doped Carbon-Supported Bimetallic CoFeP Nanospheres as Efficient Bifunctional Electrocatalysts toward Overall Water Splitting
Ist Teil von
Materials, 2021-03, Vol.14 (6), p.1473
Ort / Verlag
Switzerland: MDPI AG
Erscheinungsjahr
2021
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
It remains an urgent demand and challenging task to design and fabricate efficient, stable, and inexpensive catalysts toward sustainable electrochemical water splitting for hydrogen production. Herein, we explored the use of Fe(III) ion-assisted aniline polymerization strategy to embed bimetallic CoFeP nanospheres into the nitrogen-doped porous carbon framework (referred CoFeP-NC). The as-prepared CoFeP-NC possesses excellent hydrogen evolution reaction (HER) performance with the small overpotential (η
) of 81 mV and 173 mV generated at a current density of 10 mA cm
in acidic and alkaline media, respectively. Additionally, it can also efficiently catalyze water oxidation (OER), which shows an ideal overpotential (η
) of 283 mV in alkaline electrolyte (pH = 14). The remarkable catalytic property of CoFeP-NC mainly stems from the strong synergetic effects of CoFeP nanospheres and carbon network. On the one hand, the interaction between the two can make better contact between the electrolyte and the catalyst, thereby providing a large number of available active sites. On the other hand, it can also form a network to offer better durability and electrical conductivity (8.64 × 10
S cm
). This work demonstrates an efficient method to fabricate non-noble electrocatalyst towards overall water splitting, with great application prospect.