Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 478

Details

Autor(en) / Beteiligte
Titel
Substrate mechanics unveil early structural and functional pathology in iPSC micro-tissue models of hypertrophic cardiomyopathy
Ist Teil von
  • iScience, 2024-06, Vol.27 (6), p.109954-109954, Article 109954
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2024
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Hypertension is a major cause of morbidity and mortality in patients with hypertrophic cardiomyopathy (HCM), suggesting a potential role for mechanics in HCM pathogenesis. Here, we developed an in vitro physiological model to investigate how mechanics acts together with HCM-linked myosin binding protein C (MYBPC3) mutations to trigger disease. Micro-heart muscles (μHM) were engineered from induced pluripotent stem cell (iPSC)-derived cardiomyocytes bearing MYBPC3+/− mutations and challenged to contract against substrates of different elasticity. μHMs that worked against substrates with stiffness at or exceeding the stiffness of healthy adult heart muscle exhibited several hallmarks of HCM, including cellular hypertrophy, impaired contractile energetics, and maladaptive calcium handling. Remarkably, we discovered changes in troponin C and T localization in MYBPC3+/− μHM that were entirely absent in 2D culture. Pharmacologic studies suggested that excessive Ca2+ intake through membrane-embedded channels underlie the observed electrophysiological abnormalities. These results illustrate the power of physiologically relevant engineered tissue models to study inherited disease with iPSC technology. [Display omitted] •Substrate mechanics and MYBPC3+/− mutation trigger early hallmarks of HCM using iPSC•Differential troponin complex localization was observed in MYBPC3+/− tissues•MYBPC3+/− tissues exhibit impaired contractile energetics and slower kinetics•Excessive channel activity underlies abnormal Ca2+ handling in MYBPC3+/− tissues Mechanobiology; Biological sciences; Tissue engineering; Stem cells research
Sprache
Englisch
Identifikatoren
ISSN: 2589-0042
eISSN: 2589-0042
DOI: 10.1016/j.isci.2024.109954
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_35f0bd6352214576a41ec5a3d3f50080

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX