Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 327

Details

Autor(en) / Beteiligte
Titel
Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization
Ist Teil von
  • Sensors (Basel, Switzerland), 2015-09, Vol.15 (9), p.24595-24614
Ort / Verlag
Switzerland: MDPI AG
Erscheinungsjahr
2015
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone's acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals.
Sprache
Englisch
Identifikatoren
ISSN: 1424-8220
eISSN: 1424-8220
DOI: 10.3390/s150924595
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_33d24ad2960a42219b96959b1a3caef0

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX