Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 545

Details

Autor(en) / Beteiligte
Titel
Facile synthesis of BiSb/C composite anodes for high‐performance and long‐life lithium‐ion batteries
Ist Teil von
  • Battery energy, 2023-11, Vol.2 (6), p.n/a
Ort / Verlag
Wiley
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • Alloy‐type antimony (Sb) is considered as an attractive candidate anode for high‐energy lithium‐ion batteries (LIBs) because of its high theoretical specific capacity and volumetric capacity. However, Sb suffers from enormous volume variation during cycling, which causes electrode cracking and pulverization, and hence the fast capacity decay and poor cyclability, limiting its practical applications as a LIB anode. Herein, we report a facile, scalable, low‐cost, and efficient route to successfully fabricate BiSb/C composites via a two‐step high‐energy mechanical milling (HEMM) process. The as‐prepared BiSb/C composites consist of nanosized BiSb totally embedded in a conductive carbon matrix. As LIB anodes, BiSb/C‐73 (with 30 wt% carbon) electrodes exhibit excellent Li‐storage properties in terms of stable high reversible capacities, long‐cycle life, and high‐rate performance. Reversible capacities of ∼583, ∼466, ∼433, and ∼425 mAh g−1 at a current density of 500 mA g−1 after 100, 300, 500, and 1000 cycles, respectively, were achieved. In addition, a high capacity of ∼380 mAh g−1 can still be retained at a high rate of 5 A g−1. Such outstanding cycling stability and rate capability could be mainly attributed to the synergistic effects between the ability of nanosized BiSb particles to withstand electrode fracture during Li insertion/extraction and the buffering effect of the carbon matrix. The as‐prepared BiSb/C composites are based on commercially available and low‐cost Bi, Sb, and graphite materials. Interestingly, HEMM is a more convenient, efficient, scalable, green, and mass‐production route, making as‐prepared materials attractive for high‐energy LIBs. The BiSb/C composites are fabricated through a two‐step high‐energy mechanical milling process using commercially available and cost‐effective microsized Bi, Sb, and graphite powders. These composites consist of 70 wt% BiSb alloy and 30 wt% graphite, demonstrating exceptional lithium storage performance as anode materials in lithium‐ion batteries.
Sprache
Englisch
Identifikatoren
ISSN: 2768-1688
eISSN: 2768-1696
DOI: 10.1002/bte2.20230027
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_32d9599dfe054aac8f7d1eb7a5a07080

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX