Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 46
Plastic and reconstructive surgery. Global open, 2024-02, Vol.12 (2), p.e5599-e5599
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Machine Learning to Predict the Need for Postmastectomy Radiotherapy after Immediate Breast Reconstruction
Ist Teil von
  • Plastic and reconstructive surgery. Global open, 2024-02, Vol.12 (2), p.e5599-e5599
Ort / Verlag
United States: Lippincott Williams & Wilkins
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Post mastectomy radiotherapy (PMRT) is an independent predictor of reconstructive complications. PMRT may alter the timing and type of reconstruction recommended. This study aimed to create a machine learning model to predict the probability of requiring PMRT after immediate breast reconstruction (IBR). In this retrospective study, breast cancer patients who underwent IBR from January 2017 to December 2020 were reviewed and data were collected on 81 preoperative characteristics. Primary outcome was recommendation for PMRT. Four algorithms were compared to maximize performance and clinical utility: logistic regression, elastic net (EN), logistic lasso, and random forest (RF). The cohort was split into a development dataset (75% of cohort for training-validation) and 25% used for the test set. Model performance was evaluated using area under the receiver operating characteristic curve (AUC), precision-recall curves, and calibration plots. In a total of 800 patients, 325 (40.6%) patients were recommended to undergo PMRT. With the training-validation dataset (n = 600), model performance was logistic regression 0.73 AUC [95% confidence interval (CI) 0.65-0.80]; RF 0.77 AUC (95% CI, 0.74-0.81); EN 0.77 AUC (95% CI, 0.73-0.81); logistic lasso 0.76 AUC (95% CI, 0.72-0.80). Without significantly sacrificing performance, 81 predictive factors were reduced to 12 for prediction with the EN method. With the test dataset (n = 200), performance of the EN prediction model was confirmed [0.794 AUC (95% CI, 0.730-0.858)]. A parsimonious accurate machine learning model for predicting PMRT after IBR was developed, tested, and translated into a clinically applicable online calculator for providers and patients.
Sprache
Englisch
Identifikatoren
ISSN: 2169-7574
eISSN: 2169-7574
DOI: 10.1097/GOX.0000000000005599
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_2db69e70c7804c1889de967dfbf8290f
Format
Schlagworte
Breast, Original

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX