Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 46

Details

Autor(en) / Beteiligte
Titel
Improving the operation and thermal response of multiphase coexistence latent storage system using stabilized organic phase change material
Ist Teil von
  • Results in engineering, 2023-06, Vol.18, p.101210, Article 101210
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2023
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Multiphase coexistence in the organic phase change material (PCM) leads to practical drawbacks. It causes partial charge/discharge behavior, which reduces the operational reliability of an active latent storage unit (LSU). The present work proposes stabilized OPCM (SOPCM) as a suitable method to promote a better phase transition performance. The stabilization is done by adding 10 wt% polymers (high-density polyethylene/HDPE) for the OPCM. The proposed method reduces the supercooling degree of PCM up to 4.2 °C. It makes the specific state of charge (SoC) for SOPCM increase by 18.8%/°C along with phase transition. The SOPCM has a lower temperature gradient (3.5 °C-4.5 °C) compared to PCM (5.2 °C-7.7 °C) during the solid-liquid transition. Dynamic heating and cooling tests with a rectangular shell and u-finned tube demonstrate the charging/discharging behavior of PCM and SOPCM, which varies significantly. The charging/discharging power profile of PCM is fluctuated, particularly in the phase change region. It implies that the phase change process causes severe disturbance in the heat transfer rate. Contrary to that, the SOPCM reduces the fluctuation, indicating a stable phase transition process. It gives the SOPCM a better storage efficiency (80.2%–90.2%) than PCM (72.5%–77.1%). The SOPCM discharges the stored heat effectively and reduces the residual power at the end of discharging process. Moreover, the SOPCM has a higher thermal conductivity in the liquid state (0.184 W·m−1·K−1–0.213 W m−1 K−1) which accelerates the average response time to reach the targeted nominal power during the discharging process. •Multiphase coexistence of phase transition leads to sensible heating and fusion.•The partial charging/discharging behavior leads to a severe power fluctuation.•Stabilized method reduces the partial charging/discharging behavior.•Low temperature gradient promotes a higher specific SoC rate up to 18.8%/°C.•Stable phase transition increases the effective storage density up to 90.2%.
Sprache
Englisch
Identifikatoren
ISSN: 2590-1230
eISSN: 2590-1230
DOI: 10.1016/j.rineng.2023.101210
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_2d83a782d8204da3bc473f4be85a6039

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX