Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 258

Details

Autor(en) / Beteiligte
Titel
Integration of Microfluidic Chip and Probe with a Dual Pump System for Measurement of Single Cells Transient Response
Ist Teil von
  • Micromachines (Basel), 2023-06, Vol.14 (6), p.1210
Ort / Verlag
Switzerland: MDPI AG
Erscheinungsjahr
2023
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • The integration of liquid exchange and microfluidic chips plays a critical role in the biomedical and biophysical fields as it enables the control of the extracellular environment and allows for the simultaneous stimulation and detection of single cells. In this study, we present a novel approach for measuring the transient response of single cells using a system integrated with a microfluidic chip and a probe with a dual pump. The system was composed of a probe with a dual pump system, a microfluidic chip, optical tweezers, an external manipulator, an external piezo actuator, etc. Particularly, we incorporated the probe with the dual pump to allow for high-speed liquid change, and the localized flow control enabled a low disturbance contact force detection of single cells on the chip. Using this system, we measured the transient response of the cell swelling against the osmotic shock with a very fine time resolution. To demonstrate the concept, we first designed the double-barreled pipette, which was assembled with two piezo pumps to achieve a probe with the dual pump system, allowing for simultaneous liquid injection and suction. The microfluidic chip with on-chip probes was fabricated, and the integrated force sensor was calibrated. Second, we characterized the performance of the probe with the dual pump system, and the effect of the analysis position and area of the liquid exchange time was investigated. In addition, we optimized the applied injection voltage to achieve a complete concentration change, and the average liquid exchange time was achieved at approximately 3.33 ms. Finally, we demonstrated that the force sensor was only subjected to minor disturbances during the liquid exchange. This system was utilized to measure the deformation and the reactive force of sp. strain PCC 6803 in osmotic shock, with an average response time of approximately 16.33 ms. This system reveals the transient response of compressed single cells under millisecond osmotic shock which has the potential to characterize the accurate physiological function of ion channels.
Sprache
Englisch
Identifikatoren
ISSN: 2072-666X
eISSN: 2072-666X
DOI: 10.3390/mi14061210
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_2cebf1ed1e4249bd925d540963105239

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX