Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 56

Details

Autor(en) / Beteiligte
Titel
Representational ethical model calibration
Ist Teil von
  • NPJ digital medicine, 2022-11, Vol.5 (1), p.170-9, Article 170
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2022
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence – evidence-based or intuitive – guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multidimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration . We demonstrate the use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains.
Sprache
Englisch
Identifikatoren
ISSN: 2398-6352
eISSN: 2398-6352
DOI: 10.1038/s41746-022-00716-4
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_2a1ab4910e234d66bf4ba2e57380b10a

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX