Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
The nighttime environment is being altered rapidly over large areas worldwide through introduction of artificial lighting, from streetlights and other sources. This is predicted to impact the visual ecology of many organisms, affecting both their intra- and interspecific interactions. Here, we show the effects of different artificial light sources on multiple aspects of hawkmoth visual ecology, including their perception of floral signals for pollination, the potential for intraspecific sexual signalling, and the effectiveness of their visual defences against avian predators. Light sources fall into three broad categories: some that prevent use of chromatic signals for these behaviours, others that more closely mimic natural lighting conditions, and, finally, types whose effects vary with light intensity and signal colour. We find that Phosphor Converted (PC) amber LED lighting – often suggested to be less harmful to nocturnal insects – falls into this third disruptive group, with unpredictable consequences for insect visual ecology depending on distance from the light source and the colour of the objects viewed. The diversity of impacts of artificial lighting on hawkmoth visual ecology alone argues for a nuanced approach to outdoor lighting in environmentally sensitive areas, employing intensities and spectra designed to limit those effects of most significant concern.
Artificial light at night is a major way in which humans are altering the environment, impacting the ecology and behaviour of other species. Modelling how nocturnal hawkmoths see and are seen under multiple light sources suggests a range of potentially disruptive impacts on key behaviours.