Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 3050

Details

Autor(en) / Beteiligte
Titel
Knockdown of the UL-16 binding protein 1 promotes osteoblast differentiation of human mesenchymal stem cells by activating the SMAD2/3 pathway
Ist Teil von
  • BMC musculoskeletal disorders, 2024-03, Vol.25 (1), p.213-213
Ort / Verlag
England: BioMed Central Ltd
Erscheinungsjahr
2024
Link zum Volltext
Quelle
SpringerLink (Online service)
Beschreibungen/Notizen
  • Osteoporosis is caused by the imbalance of osteoblasts and osteoclasts. The regulatory mechanisms of differentially expressed genes (DEGs) in pathogenesis of osteoporosis are of significant and needed to be further investigated. GSE100609 dataset downloaded from Gene Expression Omnibus (GEO) database was used to identified DEGs in osteoporosis patients. KEGG analysis was conducted to demonstrate signaling pathways related to enriched genes. Osteoporosis patients and the human mesenchymal stem cells (hMSCs) were obtained for in vivo and in vitro resaerch. Lentivirus construction and viral infection was used to knockdown genes. mRNA expression and protein expression were detected via qRT-PCR and western blot assay separately. Alkaline phosphatase (ALP) activity detection, alizarin Red S (ARS) staining, and expression of bone morphogenetic protein 2 (BMP2), osteocalcin (OCN) and Osterix were evaluated to determine osteoblast differentiation capacity. UL-16 binding protein 1 (ULBP1) gene was upregulated in osteoporosis and downregulated in differentiated hMSCs. Knockdown of ULBP1 increased ALP activity, mineralization ability evaluated by ARS staining, expression of BMP2, OCN and Osterix in differentiated hMSCs. Furthermore, rescue experiment demonstrated that suppressed ULBP1 boosted osteoblast differentiation by activating TNF-β signaling pathway. Knockdown of ULBP1 gene could promoted osteoblast differentiation by activating TNF-β signaling pathway in differentiated hMSCs. ULBP1 may be a the Achilles' heel of osteoporosis, and suppression of ULBP1 could be a promising treatment for osteoporosis.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX