Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 94

Details

Autor(en) / Beteiligte
Titel
Precise segmentation of densely interweaving neuron clusters using G-Cut
Ist Teil von
  • Nature communications, 2019-04, Vol.10 (1), p.1549-12, Article 1549
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2019
Quelle
MEDLINE
Beschreibungen/Notizen
  • Characterizing the precise three-dimensional morphology and anatomical context of neurons is crucial for neuronal cell type classification and circuitry mapping. Recent advances in tissue clearing techniques and microscopy make it possible to obtain image stacks of intact, interweaving neuron clusters in brain tissues. As most current 3D neuronal morphology reconstruction methods are only applicable to single neurons, it remains challenging to reconstruct these clusters digitally. To advance the state of the art beyond these challenges, we propose a fast and robust method named G-Cut that is able to automatically segment individual neurons from an interweaving neuron cluster. Across various densely interconnected neuron clusters, G-Cut achieves significantly higher accuracies than other state-of-the-art algorithms. G-Cut is intended as a robust component in a high throughput informatics pipeline for large-scale brain mapping projects. Most neuronal reconstruction software can automatically trace single neuronal morphologies but tracing multiple, densely interwoven neurons is much more challenging. Here the authors develop G-Cut, a computational approach for accurate segmentation of densely interconnected neuron clusters.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX