Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 91

Details

Autor(en) / Beteiligte
Titel
CricShotClassify: An Approach to Classifying Batting Shots from Cricket Videos Using a Convolutional Neural Network and Gated Recurrent Unit
Ist Teil von
  • Sensors (Basel, Switzerland), 2021-04, Vol.21 (8), p.2846
Ort / Verlag
Switzerland: MDPI AG
Erscheinungsjahr
2021
Quelle
Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
Beschreibungen/Notizen
  • Recognizing the sport of cricket on the basis of different batting shots can be a significant part of context-based advertisement to users watching cricket, generating sensor-based commentary systems and coaching assistants. Due to the similarity between different batting shots, manual feature extraction from video frames is tedious. This paper proposes a hybrid deep-neural-network architecture for classifying 10 different cricket batting shots from offline videos. We composed a novel dataset, CricShot10, comprising uneven lengths of batting shots and unpredictable illumination conditions. Impelled by the enormous success of deep-learning models, we utilized a convolutional neural network (CNN) for automatic feature extraction, and a gated recurrent unit (GRU) to deal with long temporal dependency. Initially, conventional CNN and dilated CNN-based architectures were developed. Following that, different transfer-learning models were investigated-namely, VGG16, InceptionV3, Xception, and DenseNet169-which freeze all the layers. Experiment results demonstrated that the VGG16-GRU model outperformed the other models by attaining 86% accuracy. We further explored VGG16 and two models were developed, one by freezing all but the final 4 VGG16 layers, and another by freezing all but the final 8 VGG16 layers. On our CricShot10 dataset, these two models were 93% accurate. These results verify the effectiveness of our proposed architecture compared with other methods in terms of accuracy.
Sprache
Englisch
Identifikatoren
ISSN: 1424-8220
eISSN: 1424-8220
DOI: 10.3390/s21082846
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_22e20db36b0c4ac7a5f382c83cf66098

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX