Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 169

Details

Autor(en) / Beteiligte
Titel
Preprocessing Pipelines including Block-Matching Convolutional Neural Network for Image Denoising to Robustify Deep Reidentification against Evasion Attacks
Ist Teil von
  • Entropy (Basel, Switzerland), 2021-10, Vol.23 (10), p.1304
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2021
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Artificial neural networks have become the go-to solution for computer vision tasks, including problems of the security domain. One such example comes in the form of reidentification, where deep learning can be part of the surveillance pipeline. The use case necessitates considering an adversarial setting—and neural networks have been shown to be vulnerable to a range of attacks. In this paper, the preprocessing defences against adversarial attacks are evaluated, including block-matching convolutional neural network for image denoising used as an adversarial defence. The benefit of using preprocessing defences comes from the fact that it does not require the effort of retraining the classifier, which, in computer vision problems, is a computationally heavy task. The defences are tested in a real-life-like scenario of using a pre-trained, widely available neural network architecture adapted to a specific task with the use of transfer learning. Multiple preprocessing pipelines are tested and the results are promising.
Sprache
Englisch
Identifikatoren
ISSN: 1099-4300
eISSN: 1099-4300
DOI: 10.3390/e23101304
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_21fede099198467a9cc55a7e32c143c7

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX