Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 62

Details

Autor(en) / Beteiligte
Titel
Non-intrusive load monitoring method based on the time-segmented state probability
Ist Teil von
  • Energy reports, 2022-07, Vol.8, p.1418-1423
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Appliance-level data is important for developing flexible two-way interactions between users and smart grids. Non-intrusive load monitoring (NILM) is a better way to obtain appliance power consumption information. Algorithms are used to decompose customers’ total electricity consumption data into electricity consumption data of various appliances. In order to realize real-time load identification, a load identification method is proposed based on the operating probability of load in different periods. During the training phase, historical data is used to count the probability of the device being in various states at various time periods. Then, in the load decomposition stage, several appliances state estimation matrices are generated using the time-segmented state probability, and the performance function selects the optimal matrix as the identification result of the appliance state. Finally, the proposed algorithm is tested on the low-frequency dataset, and the test results verified that the load status recognition accuracy is more than 96%, which meets the application requirements of NILM.
Sprache
Englisch
Identifikatoren
ISSN: 2352-4847
eISSN: 2352-4847
DOI: 10.1016/j.egyr.2022.02.021
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_1e14b7fb8ad940a0adcde943935917ae

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX