Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 1462

Details

Autor(en) / Beteiligte
Titel
Fruits hidden by green: an improved YOLOV8n for detection of young citrus in lush citrus trees
Ist Teil von
  • Frontiers in plant science, 2024-04, Vol.15, p.1375118-1375118
Ort / Verlag
Switzerland: Frontiers Media S.A
Erscheinungsjahr
2024
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • In order to address the challenges of inefficiency and insufficient accuracy in the manual identification of young citrus fruits during thinning processes, this study proposes a detection methodology using the you only look once for complex backgrounds of young citrus fruits (YCCB-YOLO) approach. The method first constructs a dataset containing images of young citrus fruits in a real orchard environment. To improve the detection accuracy while maintaining the computational efficiency, the study reconstructs the detection head and backbone network using pointwise convolution (PWonv) lightweight network, which reduces the complexity of the model without affecting the performance. In addition, the ability of the model to accurately detect young citrus fruits in complex backgrounds is enhanced by integrating the fusion attention mechanism. Meanwhile, the simplified spatial pyramid pooling fast-large kernel separated attention (SimSPPF-LSKA) feature pyramid was introduced to further enhance the multi-feature extraction capability of the model. Finally, the Adam optimization function was used to strengthen the nonlinear representation and feature extraction ability of the model. The experimental results show that the model achieves 91.79% precision (P), 92.75% recall (R), and 97.32% mean average precision (mAP)on the test set, which were improved by 1.33%, 2.24%, and 1.73%, respectively, compared with the original model, and the size of the model is only 5.4 MB. This study could meet the performance requirements for citrus fruit identification, which provides technical support for fruit thinning.
Sprache
Englisch
Identifikatoren
ISSN: 1664-462X
eISSN: 1664-462X
DOI: 10.3389/fpls.2024.1375118
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_1ab990242f1648619972ec5d22e1195e

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX