Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 180

Details

Autor(en) / Beteiligte
Titel
De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution
Ist Teil von
  • Nature communications, 2022-10, Vol.13 (1), p.6498-19, Article 6498
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2022
Quelle
Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
Beschreibungen/Notizen
  • Uncovering the tissue molecular architecture at single-cell resolution could help better understand organisms’ biological and pathological processes. However, bulk RNA-seq can only measure gene expression in cell mixtures, without revealing the transcriptional heterogeneity and spatial patterns of single cells. Herein, we introduce Bulk2Space ( https://github.com/ZJUFanLab/bulk2space ), a deep learning framework-based spatial deconvolution algorithm that can simultaneously disclose the spatial and cellular heterogeneity of bulk RNA-seq data using existing single-cell and spatial transcriptomics references. The use of bulk transcriptomics to validate Bulk2Space unveils, in particular, the spatial variance of immune cells in different tumor regions, the molecular and spatial heterogeneity of tissues during inflammation-induced tumorigenesis, and spatial patterns of novel genes in different cell types. Moreover, Bulk2Space is utilized to perform spatial deconvolution analysis on bulk transcriptome data from two different mouse brain regions derived from our in-house developed sequencing approach termed Spatial-seq. We have not only reconstructed the hierarchical structure of the mouse isocortex but also further annotated cell types that were not identified by original methods in the mouse hypothalamus. Current methods to reanalyze bulk RNA-seq at spatially resolved single-cell resolution have limitations. Here, the authors develop Bulk2Space, a spatial deconvolution algorithm using single-cell and spatial transcriptomics as references, providing new insights into spatial heterogeneity within bulk tissue.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX