Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 3872

Details

Autor(en) / Beteiligte
Titel
Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians?
Ist Teil von
  • NPJ digital medicine, 2021-03, Vol.4 (1), p.62-62, Article 62
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2021
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Machine learning can help clinicians to make individualized patient predictions only if researchers demonstrate models that contribute novel insights, rather than learning the most likely next step in a set of actions a clinician will take. We trained deep learning models using only clinician-initiated, administrative data for 42.9 million admissions using three subsets of data: demographic data only, demographic data and information available at admission, and the previous data plus charges recorded during the first day of admission. Models trained on charges during the first day of admission achieve performance close to published full EMR-based benchmarks for inpatient outcomes: inhospital mortality (0.89 AUC), prolonged length of stay (0.82 AUC), and 30-day readmission rate (0.71 AUC). Similar performance between models trained with only clinician-initiated data and those trained with full EMR data purporting to include information about patient state and physiology should raise concern in the deployment of these models. Furthermore, these models exhibited significant declines in performance when evaluated over only myocardial infarction (MI) patients relative to models trained over MI patients alone, highlighting the importance of physician diagnosis in the prognostic performance of these models. These results provide a benchmark for predictive accuracy trained only on prior clinical actions and indicate that models with similar performance may derive their signal by looking over clinician’s shoulders—using clinical behavior as the expression of preexisting intuition and suspicion to generate a prediction. For models to guide clinicians in individual decisions, performance exceeding these benchmarks is necessary.
Sprache
Englisch
Identifikatoren
ISSN: 2398-6352
eISSN: 2398-6352
DOI: 10.1038/s41746-021-00426-3
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_151095ca45c745cbaf37ac11a1ed124a

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX