Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 3042

Details

Autor(en) / Beteiligte
Titel
An iPS‐derived in vitro model of human atrial conduction
Ist Teil von
  • Physiological reports, 2022-09, Vol.10 (18), p.e15407-n/a
Ort / Verlag
United States: John Wiley & Sons, Inc
Erscheinungsjahr
2022
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • Atrial fibrillation (AF) is the most common arrhythmia in the United States, affecting approximately 1 in 10 adults, and its prevalence is expected to rise as the population ages. Treatment options for AF are limited; moreover, the development of new treatments is hindered by limited (1) knowledge regarding human atrial electrophysiological endpoints (e.g., conduction velocity [CV]) and (2) accurate experimental models. Here, we measured the CV and refractory period, and subsequently calculated the conduction wavelength, in vivo (four subjects with AF and four controls), and ex vivo (atrial slices from human hearts). Then, we created an in vitro model of human atrial conduction using induced pluripotent stem (iPS) cells. This model consisted of iPS‐derived human atrial cardiomyocytes plated onto a micropatterned linear 1D spiral design of Matrigel. The CV (34–41 cm/s) of the in vitro model was nearly five times faster than 2D controls (7–9 cm/s) and similar to in vivo (40–64 cm/s) and ex vivo (28–51 cm/s) measurements. Our iPS‐derived in vitro model recapitulates key features of in vivo atrial conduction and may be a useful methodology to enhance our understanding of AF and model patient‐specific disease. We present an induced pluripotent stem‐derived in vitro model of human atrial conduction. The design includes a linear 1D spiral design that significantly increases conduction velocity and thus recapitulates key features of in vivo atrial conduction. The model may be a useful methodology to enhance our understanding of atrial fibrillation and model patient‐specific disease.
Sprache
Englisch
Identifikatoren
eISSN: 2051-817X
DOI: 10.14814/phy2.15407
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_1096a5009d2f471fb78ff93f3a59282d

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX