Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 1518
Sensors (Basel, Switzerland), 2024-02, Vol.24 (5), p.1369
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
LiDAR Dynamic Target Detection Based on Multidimensional Features
Ist Teil von
  • Sensors (Basel, Switzerland), 2024-02, Vol.24 (5), p.1369
Ort / Verlag
Switzerland: MDPI AG
Erscheinungsjahr
2024
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • To address the limitations of LiDAR dynamic target detection methods, which often require heuristic thresholding, indirect computational assistance, supplementary sensor data, or postdetection, we propose an innovative method based on multidimensional features. Using the differences between the positions and geometric structures of point cloud clusters scanned by the same target in adjacent frame point clouds, the motion states of the point cloud clusters are comprehensively evaluated. To enable the automatic precision pairing of point cloud clusters from adjacent frames of the same target, a double registration algorithm is proposed for point cloud cluster centroids. The iterative closest point (ICP) algorithm is employed for approximate interframe pose estimation during coarse registration. The random sample consensus (RANSAC) and four-parameter transformation algorithms are employed to obtain precise interframe pose relations during fine registration. These processes standardize the coordinate systems of adjacent point clouds and facilitate the association of point cloud clusters from the same target. Based on the paired point cloud cluster, a classification feature system is used to construct the XGBoost decision tree. To enhance the XGBoost training efficiency, a Spearman's rank correlation coefficient-bidirectional search for a dimensionality reduction algorithm is proposed to expedite the optimal classification feature subset construction. After preliminary outcomes are generated by XGBoost, a double Boyer-Moore voting-sliding window algorithm is proposed to refine the final LiDAR dynamic target detection accuracy. To validate the efficacy and efficiency of our method in LiDAR dynamic target detection, an experimental platform is established. Real-world data are collected and pertinent experiments are designed. The experimental results illustrate the soundness of our method. The LiDAR dynamic target correct detection rate is 92.41%, the static target error detection rate is 1.43%, and the detection efficiency is 0.0299 s. Our method exhibits notable advantages over open-source comparative methods, achieving highly efficient and precise LiDAR dynamic target detection.
Sprache
Englisch
Identifikatoren
ISSN: 1424-8220
eISSN: 1424-8220
DOI: 10.3390/s24051369
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_09a09c5e6c3245ff9c5e90c1cd2df07a

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX