Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 6332

Details

Autor(en) / Beteiligte
Titel
Prediction of high fecal propionate-to-butyrate ratios using 16S rRNA-based detection of bacterial groups with liquid array diagnostics
Ist Teil von
  • BioTechniques, 2023-01, Vol.74 (1), p.9-21
Ort / Verlag
England: Future Science Ltd
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • Butyrate and propionate represent two of three main short-chain fatty acids produced by the intestinal microbiota. In healthy populations, their levels are reportedly equimolar, whereas a deviation in their ratio has been observed in various diseased cohorts. Monitoring such a ratio represents a valuable metric; however, it remains a challenge to adopt short-chain fatty acid detection techniques in clinical settings because of the volatile nature of these acids. Here we aimed to estimate short-chain fatty acid information indirectly through a novel, simple quantitative PCR-compatible assay (liquid array diagnostics) targeting a limited number of microbiome 16S markers. Utilizing 15 liquid array diagnostics probes to target microbiome markers selected by a model that combines partial least squares and linear discriminant analysis, the classes (normal vs high propionate-to-butyrate ratio) separated at a threshold of 2.6 with a prediction accuracy of 96%. We present a quantitative PCR-compatible test based on the liquid array diagnostics method to be used as a tool for detecting/classifying fecal samples with an atypically high propionate-to-butyrate ratio. The liquid array diagnostics-based test presented here targets the 16S rRNA gene of a limited number of bacterial markers to infer their presence and abundance in fecal samples. The classification of samples (normal vs high propionate-to-butyrate ratio) is performed utilizing an algorithm combining partial least squares and linear discriminant analysis.
Sprache
Englisch
Identifikatoren
ISSN: 0736-6205
eISSN: 1940-9818
DOI: 10.2144/btn-2022-0045
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_08154f8235ce48eebc2341830ecc4d86

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX