Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures
Ist Teil von
International Journal of Thermodynamics, 2024-01, Vol.27 (1), p.43-50
Erscheinungsjahr
2024
Beschreibungen/Notizen
The assessment of gas behavior in chemical engineering systems necessitates a profound understanding of thermodynamic principles that govern the interactions among the components within a given system. To this end, the deviation from ideality in a single gas or gas mixture is associated with the disparity between the actual behavior of the gas or gas mixture and the behavior anticipated by the ideal gas model. This study is aimed at scrutinizing the deviation from ideal behavior in a gas mixture composed of CH4 and CO2. The analysis employs the cubic equations of state: Van Der Waals, Soave-Redlich-Kwong, and generalized Virial equations, truncated to the third term. These equations are widely recognized for their utility in characterizing substance behavior under specific thermodynamic conditions. The investigation involves an evaluation of the mixture's behavior by assessing variations in the compressibility factor concerning pressure, volume, and pressure, using a thermodynamic calculator at 296.15 K and 15 bar. The findings of this study reveal the prevalence of attractive intermolecular forces at higher pressures and repulsive interactions at lower pressures. An analogous examination of the effect of altering the composition of CH4 was undertaken using the Soave-Redlich-Kwong equation, which incorporates parameters allowing for an evaluation of the impact of molecule size and intermolecular interactions within the mixture. Furthermore, experimental data were employed to validate the results obtained in this study. Consequently, it can be inferred that these equations provide insight into the influence of pressure on molecular interaction forces, encompassing repulsive and attractive forces, which in turn can define the new volume of a real system. Thus, based on the corroboration established herein, these equations demonstrate a high degree of consistency and applicability, thereby expanding the realm of thermodynamic inquiry.