Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 1753
International journal of information technologies and systems approach, 2023-01, Vol.16 (3), p.1-21
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Early Warning of Companies' Credit Risk Based on Machine Learning
Ist Teil von
  • International journal of information technologies and systems approach, 2023-01, Vol.16 (3), p.1-21
Ort / Verlag
Hershey: IGI Global
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • With the advent of the big data era, information barriers are gradually being broken down and credit has become a key factor of company operations. The lack of company credit has greatly and negatively impacted the social economy, which has triggered considerable research on company credit. In this article, a credit risk warning model based on the XGBoost-SHAP algorithm is proposed that can accurately assess the credit risk of a company. The degree of influence of the characteristics of a company's credit risk and the warning threshold of important characteristics are obtained based on the model output. Finally, a comparison with several other machine learning algorithms showed that the XGBoost-SHAP model achieved the highest early warning accuracy and the most comprehensive explanatory output results. The experimental results show that the method can effectively provide a warning of the credit risk of a company based on the historical performance of the company's historical characteristics data. This method provides positive guidance for companies and financial institutions.
Sprache
Englisch
Identifikatoren
ISSN: 1935-570X
eISSN: 1935-5718
DOI: 10.4018/IJITSA.324067
Titel-ID: cdi_crossref_primary_10_4018_IJITSA_324067

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX