Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 202

Details

Autor(en) / Beteiligte
Titel
The First Near-infrared Transmission Spectrum of HIP 41378 f, A Low-mass Temperate Jovian World in a Multiplanet System
Ist Teil von
  • Astrophysical journal. Letters, 2022-03, Vol.927 (1), p.L5
Ort / Verlag
The American Astronomical Society
Erscheinungsjahr
2022
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Abstract We present a near-infrared transmission spectrum of the long-period ( P = 542 days), temperate ( T eq = 294 K) giant planet HIP 41378 f obtained with the Wide-Field Camera 3 instrument aboard the Hubble Space Telescope (HST). With a measured mass of 12 ± 3 M ⊕ and a radius of 9.2 ± 0.1 R ⊕ , HIP 41378 f has an extremely low bulk density (0.09 ± 0.02 g cm −3 ). We measure the transit depth with a median precision of 84 ppm in 30 spectrophotometric channels with uniformly sized widths of 0.018 μ m. Within this level of precision, the spectrum shows no evidence of absorption from gaseous molecular features between 1.1 and 1.7 μ m. Comparing the observed transmission spectrum to a suite of 1D radiative-convective-thermochemical-equilibrium forward models, we rule out clear, low-metallicity atmospheres and find that the data prefer high-metallicity atmospheres or models with an additional opacity source, such as high-altitude hazes and/or circumplanetary rings. We explore the ringed scenario for HIP 41378 f further by jointly fitting the K2 and HST light curves to constrain the properties of putative rings. We also assess the possibility of distinguishing between hazy, ringed, and high-metallicity scenarios at longer wavelengths with the James Webb Space Telescope. HIP 41378 f provides a rare opportunity to probe the atmospheric composition of a cool giant planet spanning the gap in temperature, orbital separation, and stellar irradiation between the solar system giants, directly imaged planets, and the highly irradiated hot Jupiters traditionally studied via transit spectroscopy.
Sprache
Englisch
Identifikatoren
ISSN: 2041-8205
eISSN: 2041-8213
DOI: 10.3847/2041-8213/ac559d
Titel-ID: cdi_crossref_primary_10_3847_2041_8213_ac559d

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX