Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 1040034

Details

Autor(en) / Beteiligte
Titel
The Interplay of Magnetically Dominated Turbulence and Magnetic Reconnection in Producing Nonthermal Particles
Ist Teil von
  • The Astrophysical journal, 2019-12, Vol.886 (2), p.122
Ort / Verlag
Philadelphia: The American Astronomical Society
Erscheinungsjahr
2019
Link zum Volltext
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Magnetized turbulence and magnetic reconnection are often invoked to explain the nonthermal emission observed from a wide variety of astrophysical sources. By means of fully kinetic 2D and 3D particle-in-cell simulations, we investigate the interplay between turbulence and reconnection in generating nonthermal particles in magnetically dominated (or, equivalently, "relativistic") pair plasmas. A generic by-product of the turbulence evolution is the generation of a nonthermal particle spectrum with a power-law energy range. The power-law slope p is harder for larger magnetizations and stronger turbulence fluctuations, and it can be as hard as p 2. The Larmor radius of particles at the high-energy cutoff is comparable to the size l of the largest turbulent eddies. Plasmoid-mediated reconnection, which self-consistently occurs in the turbulent plasma, controls the physics of particle injection. Then, particles are further accelerated by stochastic scattering off turbulent fluctuations. The work done by parallel electric fields-naturally expected in reconnection layers-is responsible for most of the initial energy increase and is proportional to the magnetization of the system, while the subsequent energy gain, which dominates the overall energization of high-energy particles, is powered by the perpendicular electric fields of turbulent fluctuations. The two-stage acceleration process leaves an imprint in the particle pitch-angle distribution: low-energy particles are aligned with the field, while the highest-energy particles move preferentially orthogonal to it. The energy diffusion coefficient of stochastic acceleration scales as Dγ ∼ 0.1 (c/l)γ2, where γ is the particle Lorentz factor. This results in fast acceleration timescales tacc ∼ (3/ )l/c. Our findings have important implications for understanding the generation of nonthermal particles in high-energy astrophysical sources.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX