Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Does influent COD/N ratio affect nitrogen removal and N2O emission in a novel biochar-sludge amended soil wastewater infiltration system (SWIS)?
Ist Teil von
Water science and technology, 2018-08, Vol.78 (2), p.347-357
Erscheinungsjahr
2018
Beschreibungen/Notizen
Abstract
Nitrogen removal and N2O emission of a biochar-sludge amended soil wastewater infiltration system (SWIS) with/without intermittent aeration under different influent COD/N ratios was investigated. Nitrogen removal and N2O emission were affected by influent COD/N ratio. Under a COD/N ratio between 1:1 and 15:1, average chemical oxygen demand (COD), NH4+-N and total nitrogen (TN) removal rates decreased with COD/N ratio increase in non-aerated SWISs amended with/without biochar-sludge; an increasing COD/N ratio hardly affected COD and NH4+-N removal in a biochar-sludge amended SWIS with intermittent aeration; the N2O emission rate decreased with COD/N ratio increase in the studied SWISs. The biochar-sludge amended SWIS with intermittent aeration achieved high COD (92.2%), NH4+-N (96.8%), and TN (92.7%) removal rates and a low N2O emission rate (10.6 mg/(m2 d)) under a COD/N ratio of 15:1, which was higher than those in non-aerated SWISs amended with/without biochar-sludge. Combining the biochar-sludge amended SWIS with intermittent aeration enhanced the number of nitrifying bacteria, denitrifying bacteria, nitrate reductase activities, nitrite reductase activities, and improved the abundance of nitrogen removal functional genes under a high influent COD/N ratio. The results suggested that the joint use of intermittent aeration and biochar-sludge in a SWIS could be an effective and appropriate strategy for improving nitrogen removal and reducing N2O emissions in treating high COD/N ratio wastewater.